

Techos Acústicos Knauf Máximo confort para su vista y oído

Los techos acústicos Knauf le permitirán solucionar los problemas de acústica sin dejar a un lado la elegancia, el diseño... o la salud

Miramos a un techo de un edificio y no somos conscientes de todo lo que nos puede llegar a aportar para hacer nuestra estancia más confortable.

Permitirnos tener una conversación más agradable gracias a su absorción acústica o proporcionarnos un bonito diseño estético es algo que habitualmente nos ofrecen estos elementos.

Pero ¿y si el techo permitiese purificar el aire?... esto es ya... posible gracias a la innovación en los sistemas de techos de Knauf.

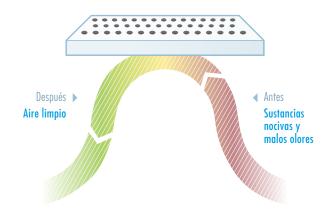
Índice

	ÚSTICOS CONTINUOS CLEÁNEC	

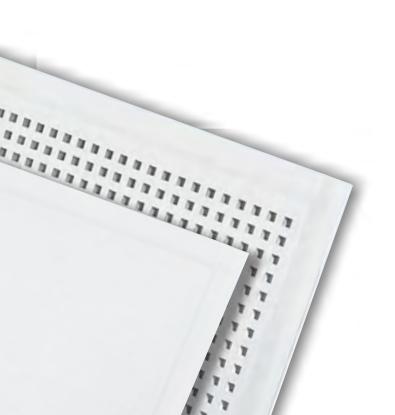
- 10 Cleaneo Akustik Rectilínea Redondo
- 12 Cleaneo Akustik Rectilínea Cuadrado
- 14 → Cleaneo Akustik Aleatoria Plus Redonda
- 6 Cleaneo Akustik Alternado
- 20 → Cleaneo Akustik Ranurada Slotline
- 14 → Cleaneo Akustik Perforación en Bloque
- Cleaneo Akustik Micro
- © → Cleaneo Akustik Tangent
- 12 → Cleaneo Cap
- - → Techos Acústicos Absorbentes Knauf FUMI

38 TECHOS ACÚSTICOS REGISTRABLES DANOLINE CLEANEO

- 42 → Contu
- 44 → Belgravia
- 46 → Plazo
- 8 → Vison
- 50 → Corrido
- 52 → Danotile


54 — TECHOS ACÚSTICOS FIBRALITH ORGANIC

58 tabla resumen absorción acústica

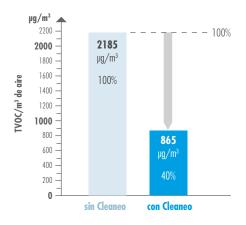

- → Techos continuos Cleaneo
- 60 → Techos Danoline Cleaned
- 61 → Techos Fibralith Organia

QUÉ ES EL EFECTO CLEANEO

El efecto Cleaneo, presente en los techos acústicos en base yeso, se basa en la zeolita, una roca natural microporosa que se encuentra en depósitos naturales y permite reducir la concentración de contaminantes en el aire en espacios cerrados, incluso para los más estables como el benceno.

EFECTO PURIFICADOR DEL AIRE

VENTAJAS


La tecnología Cleaneo reduce...

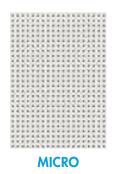
- Olores de alfombras y colchones (dodeceno)
- Olor de la cocción (trietilamina)
- Amoniaco
- Formaldehidos (pinturas, detergentes)
- Benceno (gases coches, esmaltes)
- Hidrocarburos aromáticos (disolventes, productos limpieza)

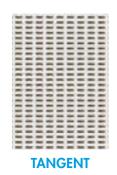
APLICACIONES

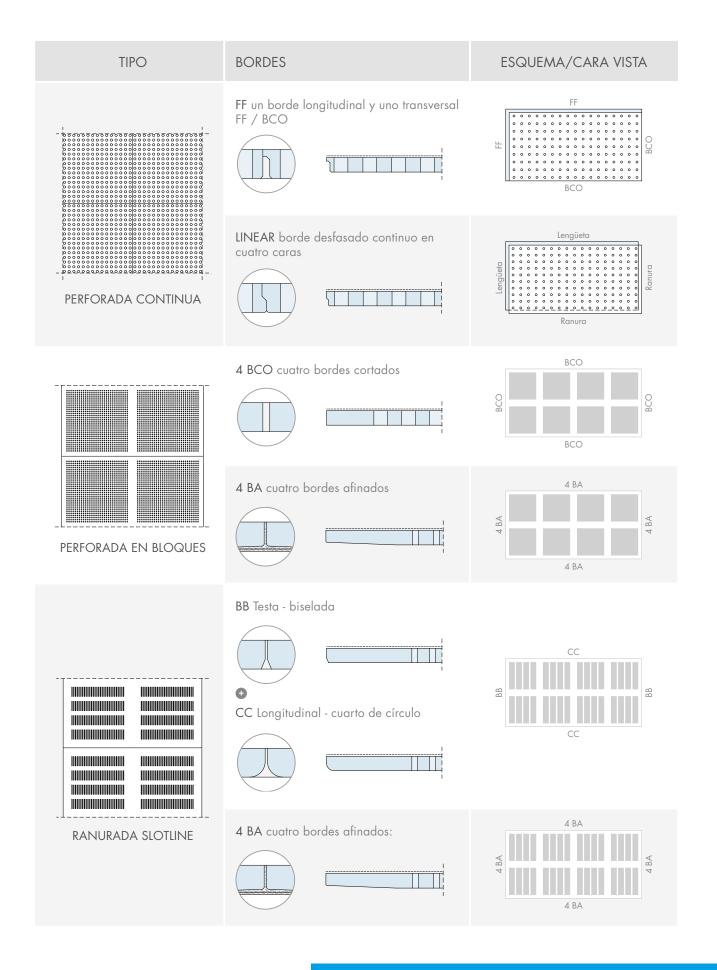
- Escuelas y centros de atención infantil
- Oficinas
- Hospitales y centros de salud
- Hoteles
- Restaurantes
- Entornos y edificios públicos (tiendas, bancos, administración pública...)

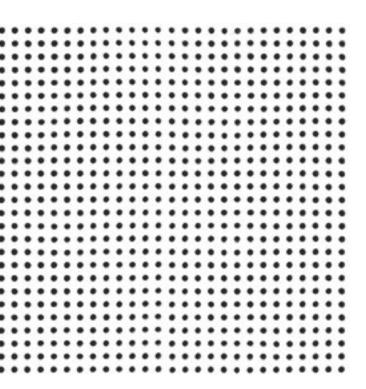
EJEMPLO

Reducción del formaldehído y benceno (TCOV) en un ambiente saturado de humo. Volumen total 75 m³ (la repercusión de techo Cleaneo Akustik por volumen de aire es de $0.3~\text{m}^2/\text{m}^3$)

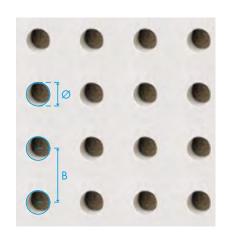








TIPOS DE BORDES


DISEÑO

REACCIÓN AL FUEGO A2-S1,D0

CONFORT ACÚSTICO

CALIDAD DEL AIRE INTERIOR

CONFORT HIGRO-

descripción	Perforación (Ø	DISTANCIA E/E (B	% Perforacion	a,**	a,**	
	6	18	18,7	0,45	0,45	
	8	18	15,5	0,60	0,62	
Velo blanco*	10	23	14,8	0,60	0,60	
	12	25	18,1	0,65	0,67	
	15	30	19,6	0,65	0,67	
					l	1

* Velo negro bajo pedido

BORDES

Según perforación

BORDE LINEAR

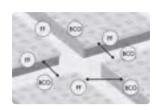
8/18

10/23

BORDE FF + BCO

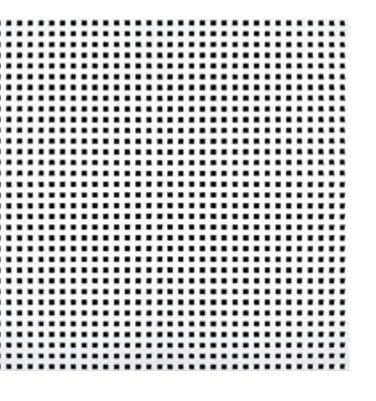
6/18

8/18


10/23

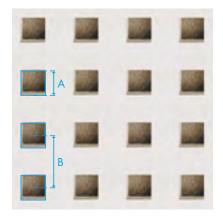
12/25

15/30



	DESCRIPCIÓN	DIMENSIONES	BORDE LINEAR	BORDE FF
	6/18 R	1.188x1.998 mm		•
	8/18 R	1.188x1.998 mm	•	S
Cleaneo Akustik Rectilínea Redonda	10/23 R	1.196x2.001 mm	•	•
	12/25 R	1.200x1.980 mm		S
	15/30 R	1.200x1.980 mm		©

^{**} α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58


DISEÑO

AL FUEGO A2-S1.D0

CONFORT ACÚSTICO

CALIDAD DEL AIRE INTERIOR

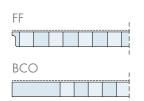
CONFOR HIGRO-

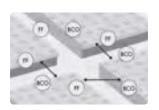
descripción	perforación (a)	DISTANCIA E/E (B)	% Perforacion	a,**	$lpha_{_{ m m}}^{**}$	
Velo Blanco*	8	18	19,8	0,65	0,67	
volo Blanco	12	25	23	0,70	0,72	

BORDES

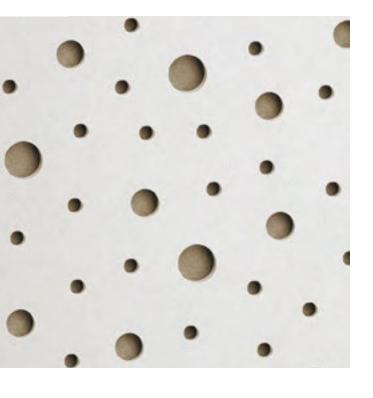
Según perforación

BORDE LINEAR 12/25



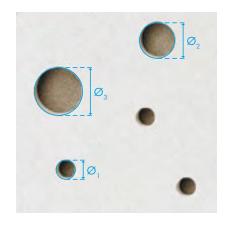


BORDE FF + BCO 8/18 12/25



	DESCRIPCIÓN	DIMENSIONES	BORDE LINEAR	BORDE FF
Cleaneo Akustik	8/18 Q	1.188x1.998 mm		>
Rectilínea Cuadrada	12/25 Q	1.200x2.001 mm	Ø	•

 $^{*}$ Velo negro bajo pedido ** α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58

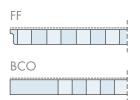

DISEÑO

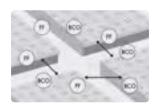
REACCIÓN AL FUEGO A2-S1,D0

CONFORT ACÚSTICO

CALIDAD DEL AIRE INTERIOR

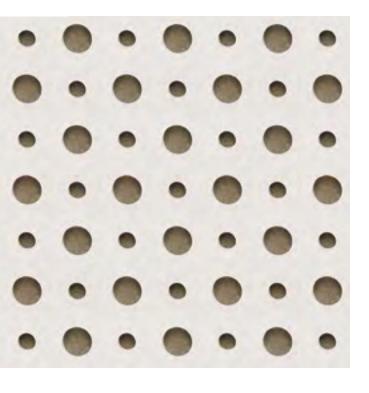
CONFORT HIGRO-TÉRMICO


descripción	Perforación (Ø ₁ /Ø ₂ /Ø ₃)	% Perforacion	~**	α _m **
Velo Blanco*	8/15/20	9,9	0,50 (L)	0,50
yolo blanco	12/20/35	9,8	0,45 (L)	0,47


BORDES

Según perforación

BORDE FF + BCO 8/15/20 12/20/35



	DESCRIPCIÓN	DIMENSIONES	BORDE FF
Cleaneo Akustik Aleatoria Plus Redonda	8/15/20 R	1.200x1.875 mm	•
	12/20/35 R	1.200x1.875 mm	•

^{*} Velo negro bajo pedido ** α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58


DISEÑO

REACCIÓN AL FUEGO A2-S1,D0

CONFORT ACÚSTICO

CALIDAD DEL AIRE INTERIOR

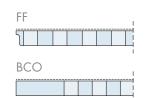
CONFORT HIGRO-TÉRMICO

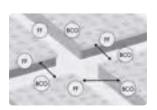
Perforación (Ø,/Ø ₂)	DISTANCIA E/E (B)	% Perforacion	a,**	$lpha_{_{ m m}}^{**}$	
8/12	50	13,1	0,60	0,58	
12/20	66	19,6	0,60 (L)	0,65	
	21/8 PERFORA((Ø ₁ /Ø ₂)	PERFORACIÓN [Ø1/Ø2] DISTANCIA E/E	21/8 PERFORACIÓN (Ø1/Ø2) 22 DISTANCIA E/E (22 % PERFORACION	PERFORACIÓN (Ø ₁ /Ø ₂) (Ø ₂) (Ø ₂) (Ø ₃ /Ø ₂) (Ø ₃ /Ø ₂) (Ø ₃ /Ø ₂) (Ø ₄ /Ø ₄) (Ø ₄ /Ø ₂) (Ø ₄ /Ø ₄) (Ø	8/12 50 13,1 0,60 0,58

BORDES

Según perforación

BORDE LINEAR 12/20/66



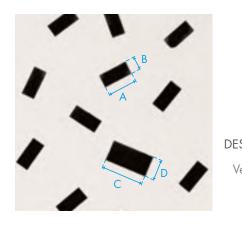


BORDE FF + BCO 8/12/50 12/20/66

	DESCRIPCIÓN	DIMENSIONES	BORDE LINEAR	BORDE FF
Cleaneo Akustik	8/12/50 R	1.200×2.000 mm		•
alternada	12/20/66 R	1.188×1.980 mm	⊘	©

 $^{*}$ Velo negro bajo pedido ** α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58

CLEANEO AKUSTIK ALEATORIA RECTANGULAR RE CONFETI

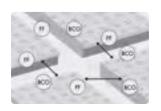


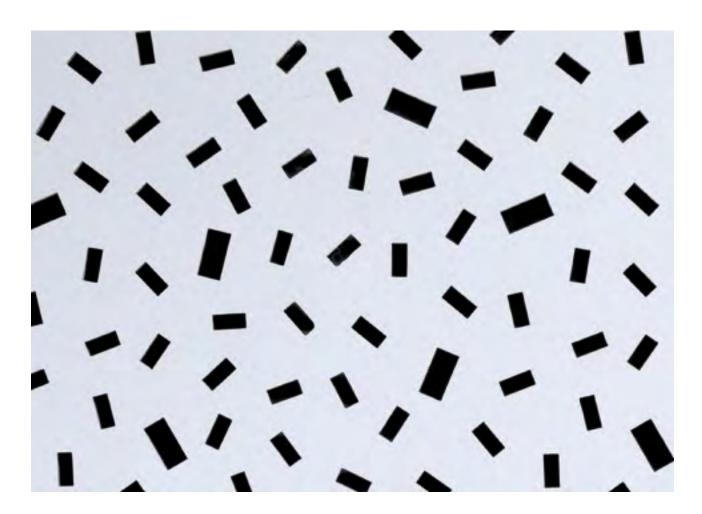
DISEÑO

REACCIÓN AL FUEGO A2-S1,D0 CONFORT ACÚSTICO CALIDAD DEL AIRE INTERIOR

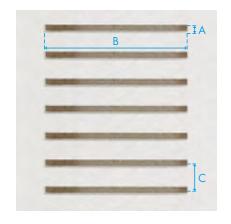
CONFORT HIGRO-

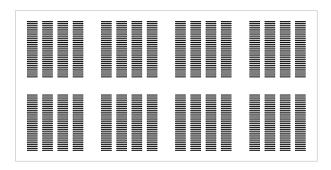
escripción	perforación (axb)	perforación (cxd)	ANCHO	LARGO	% PERFORACION	CC_***	α _m **
/elo Blanco*	28×13	40x20	1199	1199	13,6	0,50	0,55


 * Velo negro bajo pedido ** $\alpha_{^w}$ y $\alpha_{^m}$ para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58


BORDES

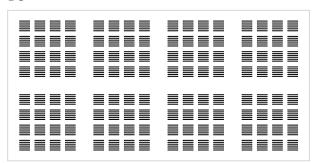
BORDE FF + BCO



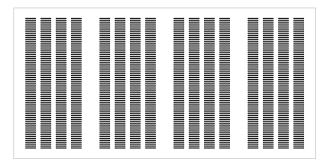


DESCRIPCIÓN	perforación (A/B)	DISTANCIA E/E (C)	LARGO	ANCHO
Velo Blanco*	8x82	15,4	2.400	1.200

^{*} Velo negro bajo pedido


DISEÑO DE LA PLACA

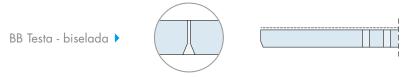
B4


% PERFORACION	13,7
$\alpha_{_{\rm w}}$	0,55 (L)
$\alpha_{_{\mathrm{m}}}$	0,55

B5

% PERFORACION	10,9
$\alpha_{_{\mathrm{w}}}$	0,50
α_{m}	0,50

В6



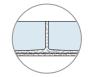
15,7	% PERFORACION
0,50	$\alpha_{_{\mathrm{w}}}$
0,52	$\alpha_{_{\mathrm{m}}}$

BORDES

BORDES BB + CC

Cleaneo Akustik Slotline ranurada B4, B5 y B6.

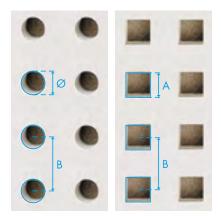
•


CC Longitudinal Cuarto de círculo

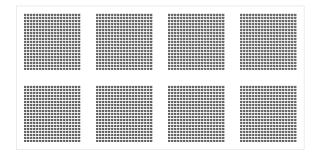
BORDE 4 BA

Cleaneo Akustik Slotline ranurada B4, B5 y B6.

4 BA cuatro bordes afinados

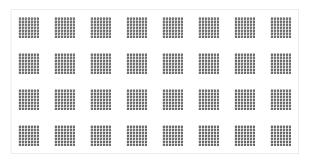


	DESCRIPCIÓN	DIMENSIONES	$\alpha_{_{ m w}}/\alpha_{_{ m m}}$	BORDE BB + CC	BORDE 4 BA
	B4	1.200x2.400 mm	0,55 (L) / 0,55	©	S
Cleaneo Akustik ranurada Slotline	B5	1.200x2.400 mm	0,50 / 0,50	•	Ø
	В6	1.200x2.400 mm	0,50 / 0,52	Ø	S

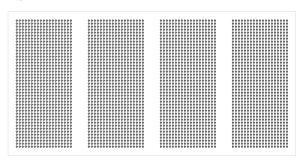

redonda (r) Q	uadril (Q)
---------------	------------

DESCRIPCIÓN	TIPO	perforación (Ø//	DISTANCIA E/E (B)	ANCHO	LARGO
	R	8/12	18/25	1.200	2.400
Velo blanco*	Q	12	25	1.188	1.980

^{*} Velo negro bajo pedido


DISEÑO DE PLACA

B4


	% PERF.	a,**	a,**
REDONDA 8/18 12/25	11,34	0,55 0,50 (L)	0,55 0,52
CUADRADA	14,40	0,55 (L)	0,57

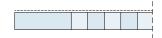
B5

	% PERF.	o.**	${f \alpha_m}^{**}$
REDONDA 8/18 12/25	6,12	0,50 0,35 (L)	0,50 0,37
CUADRADA	7,84	0,40 (L)	0,42

B6

	% PERF.	α [*] **	a _m **
REDONDA 8/18 12/25	12,83	0,55 0,55 (L)	0,57 0,57
CUADRADA	16,34	0,60 (L)	0,62

^{**} α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58


BORDES

BORDE 4 BCO

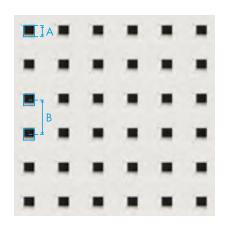
Cleaneo Akustik perforación en Bloque B4, B5 y B6.

4 BCO cuatro bordes cortados

BORDE 4 BA

Cleaneo Akustik perforación en Bloque B4, B5 y B6.

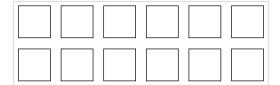
4 BA cuatro bordes afinados



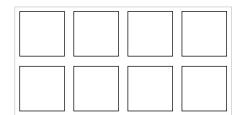
	DESC.	1	TIPO	% PERF.	DIMENSIONES	α_{w}	$\alpha_{_{m}}$	BORDE 4 BCO	BORDE 4 BA		
loque		D	8/18	11 2 49/	1 200 2 400	0,55	0,55		⊘		
	B4	R	12/25	11,34%	1.200x2.400 mm	0,50 (L)	0,52	•	•		
en Bl		Q	12/25	14,40%	1.188x1.980 mm	0,55 (L)	0,57	S	S		
ración	Cleaneo Akustik perforación en Bloque 99	D	8/18 R	6,12%	1.200×2.400 mm	0,50	0,50	⊘	Ø		
perfo		B4		K	12/25		1.200X2.400 IIIII	0,35 (L)	0,37		
kustik		Q	12/25	7,84%	1.188x1.980 mm	0,40 (L)	0,42	•	•		
Cleaneo Ak		R	8/18	12,83%	1.200x2.400 mm	0,55	0,57	⊘	©		
	В6		12/25	12,03%	1.20082.400 111111	0,55 (L)	0,57				
		Q	12/25	16,34%	1.188x1.980 mm	0,60 (L)	0,62	•	•		

DESCRIPCIÓN	TIPO	perforación (a)	DISTANCIA E/E (B)	АИСНО	LARGO	% perforación	~**	α _m **
* 00L	M1F	3	8,33	900	2.700	9,8	0,60	0,60
Velo blanco*	M2F	3	8,33	900	2.700	7,1	0,45	0,45
Velo	M2F	3	8,33	1.200	2.400	8,4	0,55	0,52

* Velo negro bajo pedido


DISEÑO DE PLACA

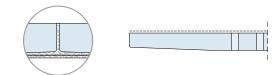
M1F (900×2.700)

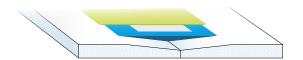

Perforación: 9,80%

M2F (900x2.700)

Perforación: 7,10%

M2F (1.200×2.700)

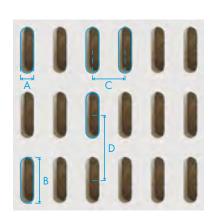



Perforación: 8,40%

BORDES

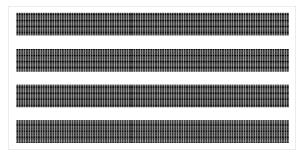
Aplicable a Cleaneo Akustik Micro MF1 y a los dos tipos de Cleaneo Akustik Micro MF2.

BORDES 4 BA
 Cuatro bordes afinados

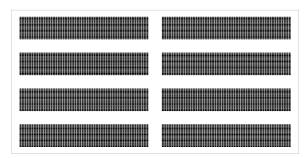


Cleaneo Akustik 4BA

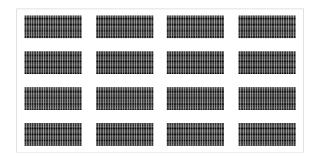
^{**} α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58



DESCRIPCION	TIPO	perforación (Axb)	DISTANCIA E/E (C/D)	ANCHO	LARGO	% perforación	~** ~**	α _m **
001	TL1	4x14	10/20	900	2.400	15,8	0,65	0,67
Velo blanco	TL2	4x14	10/20	900	2.400	15	0,60	0,62
Velo	TL3	4x14	10/20	900	2.400	13,3	0,55	0,57

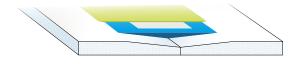

* Velo negro bajo pedido

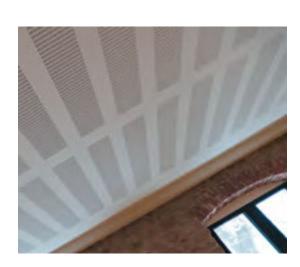
DISEÑO DE PLACA


TL1 Perforación: 15,80%

TL2 Perforación: 15%

TL3 Perforación: 13,30%




BORDES

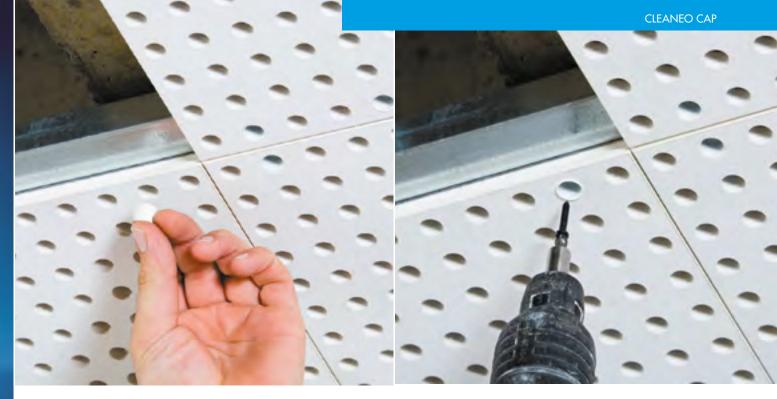
Aplicable a Cleaneo Akustik Tangent TL1, TL2 y TL3.

BORDES 4 BA
 Cuatro bordes afinados

^{**} α_w y α_m para techo suspendido 200mm sin lana mineral. Más datos acústicos página 58

NUEVO SISTEMA PARA FIJACIÓN DE TECHOS KNAUF CLEANEO AKUSTIK CON PERFORACIÓN CIRCULAR Y CUADRADA

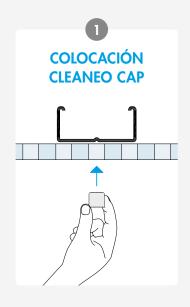
IDEAL PARA EL BORDE LINEAR

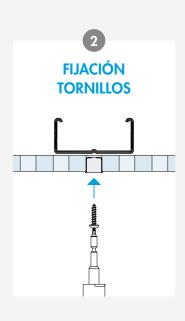

filosofía de techos Cleaneo Akustik.

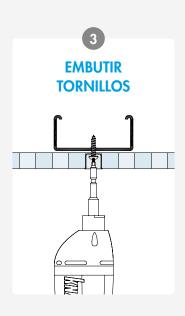
Mediante la combinación de capuchón y tornillo, se puede atornillar directamente las placas sin dañar la superficie, entrando el capuchón directamente en la perforación.

Usando Cleaneo Cap y el borde Linear, se elimina tanto el emplastecido de los tornillos como el tratamiento de juntas.

Lo cual supone un ahorro en tiempo, además de obtener un acabado regular sin tener que lijar y evitando generar suciedad.


LAS PLACAS CON BORDE LINEAR ESTÁN PREPINTADAS, LO CUAL, JUNTO CON CLEANEO CAP,
AHORRA MUCHO TIEMPO DE INSTALACIÓN


MONTAJE


El montaje con Knauf Cleaneo Cap es sencillo, rápido y absolutamente seguro. La cantidad de fijaciones se asegura con 23 puntos por m², de forma idéntica a los utilizados con el método tradicional.

Los capuchones se introducen en las perforaciones (ver figura en la parte inferior). Para su uso en diferentes tipos de placas existen capuchones de 8, 10, y 12 mm de diámetro, así como capuchones cuadrados de 12 mm.

CLEANEO CAP AHORRA TRABAJO Y TIEMPO

MEDIANTE LAS ISLAS ACÚSTICAS CLEANEO UP SE MEJORA EL CONFORT ACÚSTICO DE LOS ESPACIOS SIN TENER QUE CAMBIAR EL TECHO

UN SISTEMA IDEAL PARA UNA REFORMA DE LOCALES POCO CONFORTABLES ACÚSTICAMENTE

UN SISTEMA MONTADO EN FÁBRICA PREPARADO PARA SUSPENDER DIRECTAMENTE

MODELOS

Disponible en blanco y acabado hormigón.

VENTAJAS

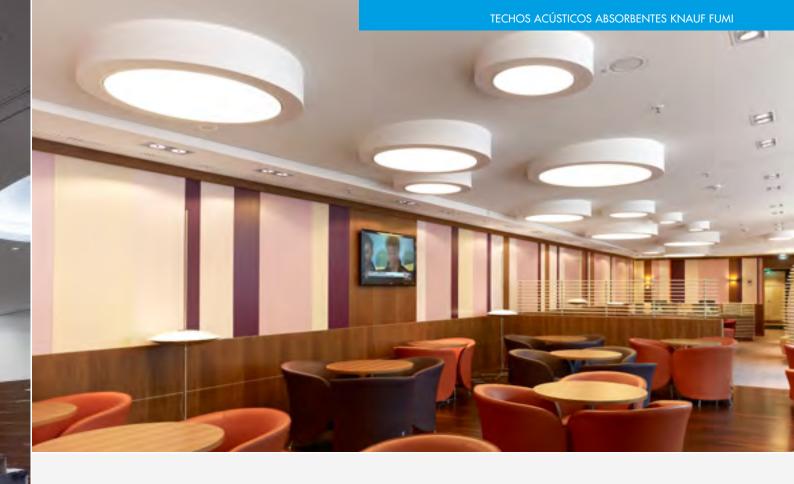
- Mejora de forma homogénea y uniforme la absorción acústica en diversos tipos de estancias.
- Permite incorporar un atractivo diseño.
- Listo para montar de forma rápida y fácil al ser un kit de instalación con el acabado incluido.

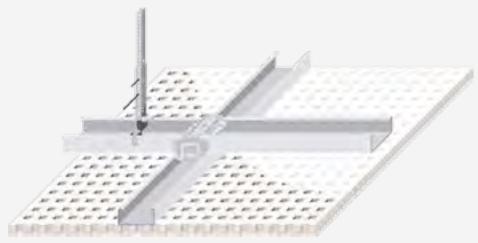
ZONAS DE USO

- Guarderías
- Restaurantes
- Consultas
- Hoteles

Disfrutarán rápidamente de una reducción drástica del ruido molesto sin tener que cerrar el negocio.

LOS TECHOS CONTINUOS KNAUF CLEANEO FUMI ES LA MEJOR SOLUCIÓN PARA LOS PROYECTOS EN LOS QUE SE REQUIERA UNA ALTA ABSORCIÓN ACÚSTICA CON UNA ESTÉTICA SIN PERFORACIONES.

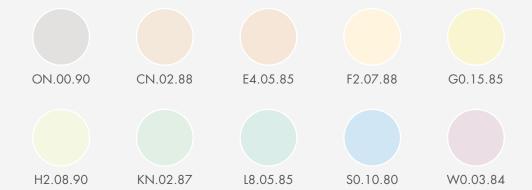

CONFORT ACÚSTICO SIN PERFORACIONES VISIBLES


Los techos Knauf FUMI están diseñados para aquellos proyectos que requieren un alto acondicionamiento acústico, pero se prefiere un acabado estético sin perforaciones visibles.

Existen acabados con una textura desde lo más liso hasta lo más rugoso, permitiendo jugar al proyectista con lo que necesite para cada caso.

ZONAS DE USO

- Hospitales
- Centros de Salud
- Fábricas
- Hoteles



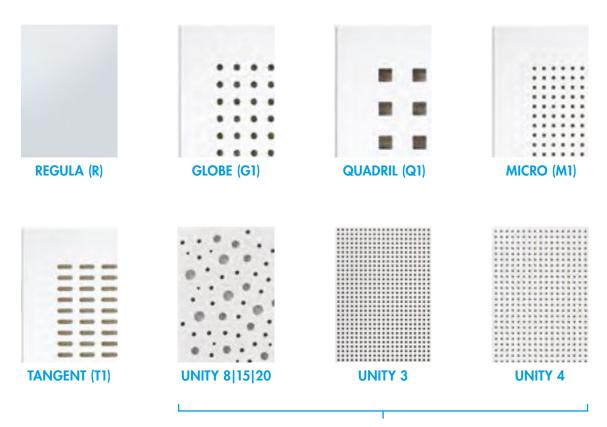
▲ Techo Knauf FUMI D126.es

GAMA DE COLORES

Amplia gama de colores bajo pedido, puedes ver algunos a continuación:

La absorción acústica y la elegancia se unen en la gama de techos acústicos registrables Danoline Cleaneo de Knauf.

Nuestros techos registrables incluyen un delgado velo de fibra de vidrio absorbente en su parte posterior, que mejora aún más la capacidad de absorción del sonido de las placas en diferentes frecuencias. Gracias a la variedad de terminaciones lisa o con perforaciones, el abanico de combinaciones de diseño son muy amplias.


CERTIFICACIONES

En función de su acabado estético, los techos pueden denominarse:

Gama **UNITY** con perforación hasta el borde de la placa


TIPOS DE BORDES

CUADRO DE BORDES Y PERFORACIONES

E longitudinal / B transversal

	A Perfil visto T15/T24	A+ Perfil visto T15/T24	E Perfil semivisto T15/T24	E+ Perfil Semivisto T15/T24	D Perfil oculto T24	D+ Perfil oculto T24	VISONA E/B T24	D CORRIDOR
REGULA (R)	©		S		•		•	©
GLOBE (G1)	⊘		Ø		•			⊘
QUADRIL (Q1)	©		S		•			©
MICRO (M1)	Ø		S		S			⊘
TANGENT (T1)	©		S		•		•	©
UNITY 8/15/20		•		•		•		
UNITY 3		•		•		•		
UNITY 4		•		•		S		
DANOTILE	©							

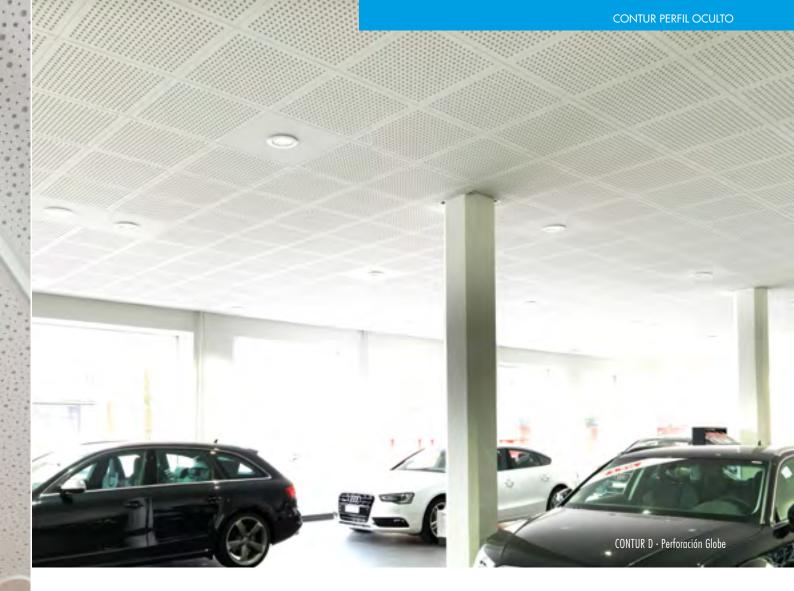
CONTUR Perfil oculto

El sistema CONTUR permite tener una junta discreta donde no se ve el perfil, aunado a una amplia gama de acabados y altas prestaciones de absorción acústica y reflexión de la luz.

BORDE D

BORDE D+

DISEÑO


REACCIÓN AL FUEGO A2-S1,D0

CONFORT ACÚSTICO

CALIDAD DEL AIRE INTERIOR

CONFORT HIGRO-TÉRMICO

reflexión Lumínica

REGULA (R)

Reflexión 82,6%

CU_W 0,10 *

CU_m 0,07 *

GLOBE (G1)

Reflexión 72,8%

Ct_w 0,60 *

Ct_m 0,67 *

Perforación 10,2%

 QUADRIL (Q1)

 Reflexión
 75,1%

 Cw
 0,60 *

 Cm
 0,65 *

 Perforación
 13,0%

 $\begin{array}{ll} \text{MICRO (M1)} \\ \text{Reflexión} & 72,1\% \\ \alpha_{\text{W}} & 0,65 * \\ \alpha_{\text{m}} & 0,62 * \\ \text{Perforación} & 10,2\% \end{array}$

TANGENT (T1)


Reflexión 70,9% C_W 0,70 * C_M 0,70 *

Perforación 19,7%

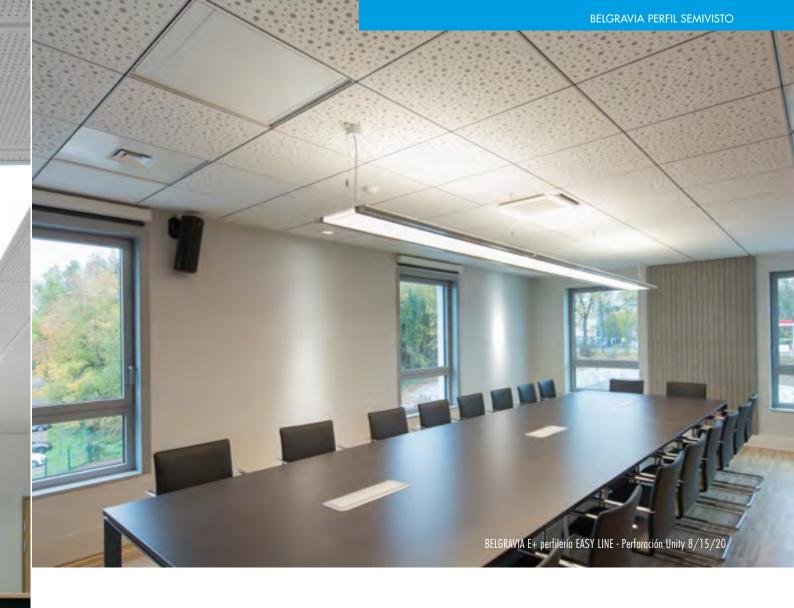
BORDE D

 $\begin{array}{c} \text{UNITY 3} \\ \text{Reflexión} & 69,2\% \\ \text{C$^{\text{U}}_{\text{W}}} & 0,80* \\ \text{C$^{\text{C}}_{\text{m}}} & 0,78* \\ \text{Perforación} & 17,2\% \\ \end{array}$

UNITY 4

Reflexión 72,5% CL_W 0,65 * CL_m 0,67 *

Perforación 12,2%


Reflexión 72,2% CC_W 0,60* CC_m 0,57*Perforación 10,8%

BORDE D+

^{*} $\alpha_{\rm W}$ y $\alpha_{\rm m}$ para techo suspendido 200 mm sin lana mineral. Más datos acústicos página 58

REGULA (R) Reflexión 82,6% $\mathbb{C}_{\mathbb{W}}$ 0,10 * C4_m 0,07 *

GLOBE (G1) Reflexión 72,8% CL_W 0,60 * O.67 * Perforación 10,2%

QUADRIL (Q1) Reflexión 75,1% α_{w} 0,60 * C4_m 0,65 * Perforación 13,0%

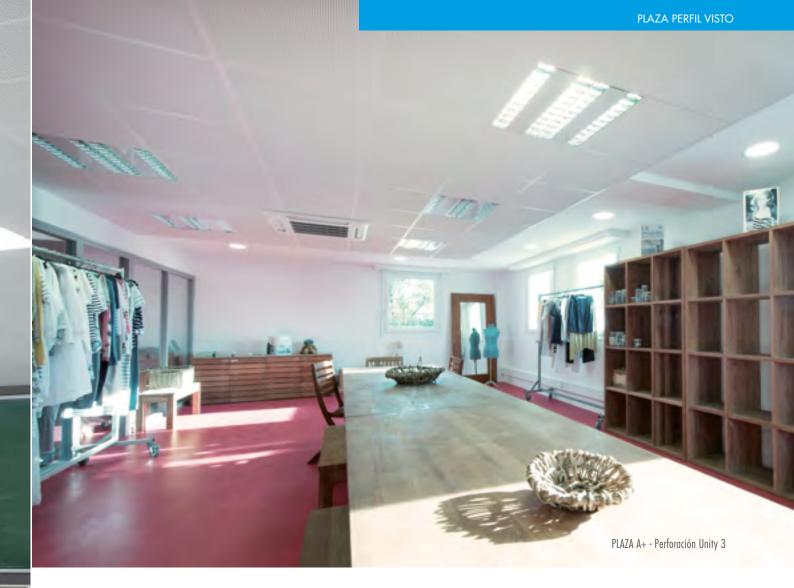
Reflexión 72,1% \mathcal{O}_{W} 0,65 * C4_m 0,62 * Perforación 10,2%

TANGENT (T1) Reflexión 70,9% CL_W C4_m 0,77 * Perforación 21,3%

BORDE E

UNITY 3 Reflexión 69,2% α_{w} 0,80 * C4_m 0,78 * Perforación 17,2%

UNITY 4 Reflexión 72,5% Ct_{W} 0,65 * O.67 * Perforación 12,2%


Reflexión 72,2% Ct_{W} 0,60 * C4_m 0,57 * Perforación 10,8%

BORDE E+


^{*} $\alpha_{\rm W}$ y $\alpha_{\rm m}$ para techo suspendido 200 mm sin lana mineral. Más datos acústicos página 58

REGULA (R) Reflexión 82,6% ${\rm C\!\ell}_{\rm W}$ 0,10 * C4_m 0,07 *

GLOBE (G1) Reflexión 72,8% CL_W 0,60 * O.67 * Perforación 10,2%

QUADRIL (Q1) Reflexión 75,1% Ct_{W} 0,60 * C4_m 0,65 * Perforación 13,0%

Reflexión 72,1% 0,65 * C4_m 0,62 * Perforación 10,2%

TANGENT (T1) Reflexión 70,9% α_{M} C4_m 0,77 * Perforación 21,3%

BORDES

BORDE A

UNITY 3 Reflexión 69,2% Olemost0,80 * CL_m 0,78 * Perforación 17,2%

UNITY 4 Reflexión 72,5% CC^M 0,65 * CL_m 0,67 * Perforación 12,2%

UNITY 8|15|20 Reflexión 72,2% 0,60 * Ct_{W} O_m 0,57 * Perforación 10,8%

BORDE A+

^{*} $\alpha_{\rm w}$ y $\alpha_{\rm m}$ para techo suspendido 200 mm sin lana mineral. Más datos acústicos página 58

BORDES

Borde E para el lado longitudinal y Borde B para el lado transversal:

Reflexión	82,6%
Ct^{M}	0,10 *
0	0.07 *

REGULA (R)

Reflexión	70,9%
$\mathcal{O}_{\mathbb{W}}$	0,80 *
α_{m}	0,77 *
Perforación	21,3%

TANGENT (T1)

BORDE E - LADO LONGITUDINAL

BORDE B - LADO TRANSVERSAL

^{*} α_w y α_m para techo suspendido 200 mm sin lana mineral. Más datos acústicos página 58

DIMENSIONES

Su variedad de longitudes permite adaptarse a las necesidades del proyecto.

ANCHO	LARGO	ESPESOR
	1.200 mm	
	1.500 mm	
400 mm	1.800 mm	9,5 mm
	2.100 mm	
	2.400 mm	

PERFORACIONES

REGULA (R)

Reflexión 82,6%

CL_W 0,10 *

CL_m 0,07 *

GLOBE (G1)

Reflexión 72,8%

CV_W 0,60*

CV_m 0,67*

Perforación 10,6%

 $\begin{array}{lll} \text{QUADRIL (Q1)} \\ \text{Reflexión} & 75,1\% \\ \text{CV}_{\text{W}} & 0,60 \, ^* \\ \text{CV}_{\text{m}} & 0,65 \, ^* \\ \text{Perforación} & 14,2\% \end{array}$

Reflexión 72,1%

C4_W 0,65 *

C4_m 0,62 *

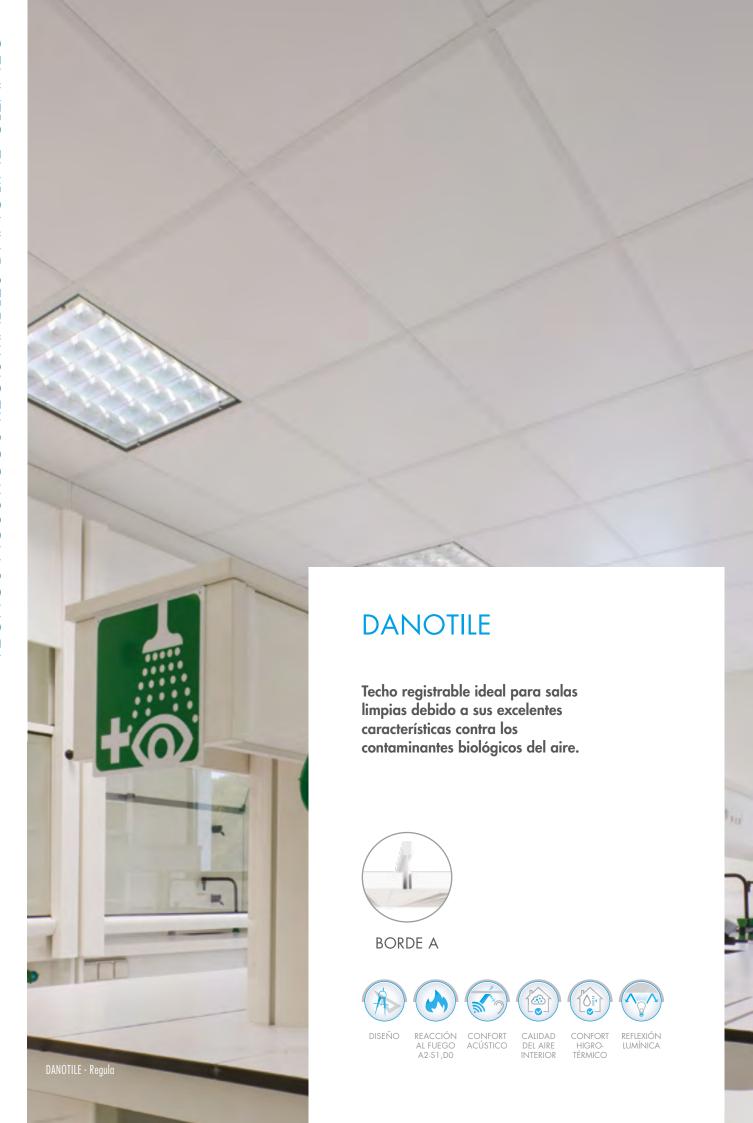
Perforación 10,6%

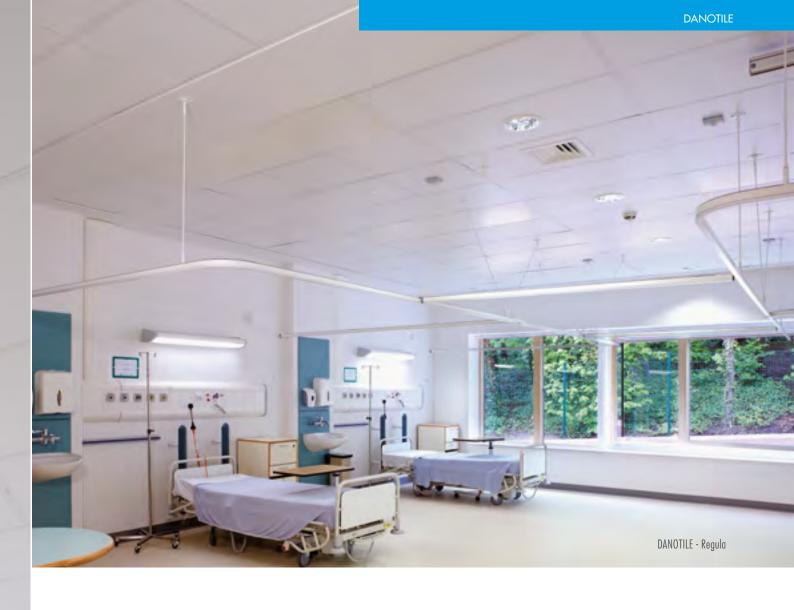
TANGENT (T1)

Reflexión 70,9%

Cvw 0,80 *

Cvm 0,77 *


Perforación 21,6%


BORDES

BORDE D CORRIDOR

^{*} ${f CL}_W$ y ${f CL}_m$ para techo suspendido 200 mm sin lana mineral. Más datos acústicos página 58

Gracias a las funciones Bactericidas y Fungicidas de los techos DANOTILE, es una gran solución para zonas asépticas que requieran un alto control sanitario, como hospitales, residencias, centros de salud en general, como zonas de manipulación de alimentos, laboratorios, industria farmaceútica...

DIMENSIONES

PERFORACIONES

REGULA (R)

BORDE A

* $\alpha_{\rm W}$ y $\alpha_{\rm m}$ para techo suspendido 200 mm sin lana mineral. Más datos acústicos página 58

BORDES

CERTIFICACIONES

Sistema de techo apto para salas ISO 5 CP5 M1.

TECHOS DE LANA DE MADERA FIBRALITH ORGANIC

Sanas, ecológicas e imputrescibles, las placas acústicas de lana de madera Organic muestran con orgullo su doble personalidad "tendencia y medio ambiente".

Organic es la solucion especialmente adaptada para salas de espectáculos, gimnasios, restaurantes o piscinas, con el fin de combinar una acustica excelente con una estética perfecta gracias a su amplia gama de colores.

LA LANA DE MADERA PERMITE CONTROLAR LA REVERBERACIÓN DEL RUIDO Y GARANTIZAR UN CONFORT ACÚSTICO NOTABLE EN CUALQUIER SITUACIÓN

ORGANIC

La respuesta acústica a todos los proyectos

Placa estándar por excelencia, **Organic** se adapta a todas las demandas, tanto estéticas como acústicas, en interiores o exteriores, para techos o paredes.

Organic 35 mm (plenum 200 mm) $CL_{_{W}} = \text{ 0,70 (H)}$ $CL_{_{m}} = \text{ 0,68}$

ORGANIC TWIN

Altas prestaciones acústicas

Combine estética natural con elevadas prestaciones acústicas: **Organic Twin** asume el desafío de complacer a la vista y al oído.

Organic Twin 50 mm (plenum 200 mm) $\alpha_{\rm W} = 0.95$ (LH) $\alpha_{\rm m} = 1.00$

ORGANIC MINERAL

Combinar la acústica y lo térmico

Con su lana de madera y su lana de roca, **Organic Mineral** combina excelentes prestaciones acústicas y térmicas.

Organic Mineral 50 mm (plenum 50 mm) $\alpha_{\rm W} = 1,00$ $\alpha_{\rm m} = 1,04$

Más datos acústicos página 58

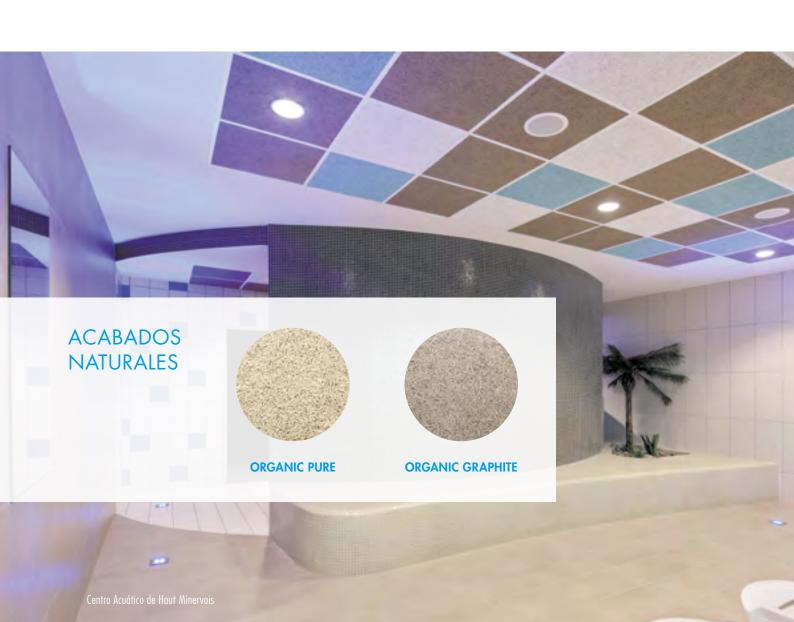
COLOCACIÓN EN ESTRUCTURA T24 Ó T35

Solo en techo registrable

ESTRUCTURA

 Uso de estructura T24 o T35 en función del espesor y tipo de borde de la placa

BORDES DISPONIBLES


BORDE RECTO AOrganic + Organic Twin

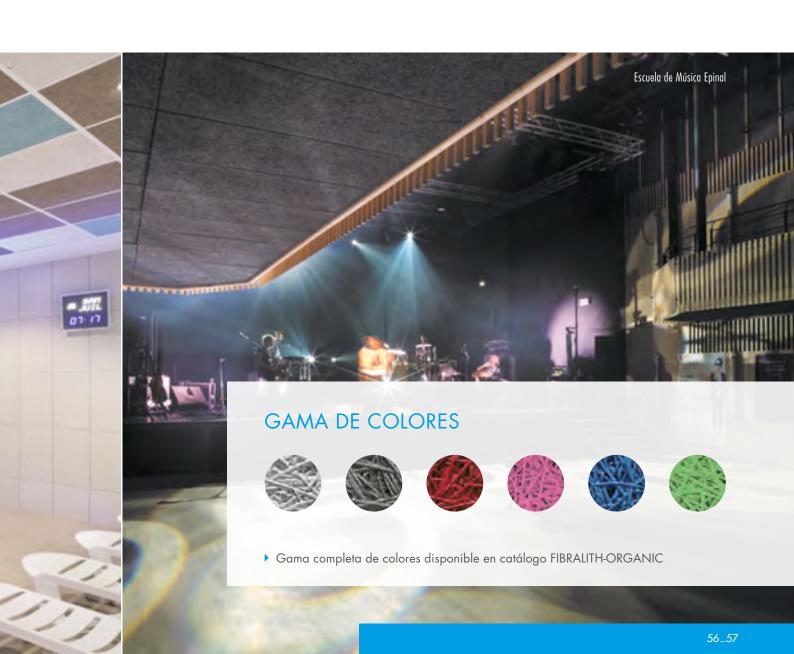
BORDE ESCALONADO
Y BISELADO E
Organic

BORDE PARA ESTRUCTURA
OCULTA REGISTRABLE D
Organic

COLOCACIÓN CON FIJACIÓN MECÁNICA (NO REGISTRABLE)

En paredes o techos

- 1 TIPO DE BORDE
- ▶ Biselado 4 lados
- 2 TIPOS DE COLOCACIÓN
- FMIV: fijación oculta con clip FIB IV (Organic) o clip Organic (Organic)
- FMV: fijación visible con tornillo pasante (Organic + Organic Mineral + Organic Twin)


con clip FIB IV

COLOCACIÓN FMIV con clip Organic

COLOCACIÓN FMV con tornillo Organic

TECHOS CONTINUOS CLEANEO

TIDO DE DI A CA	0/ DEDE	PLENUM		α_{s}						
TIPO DE PLACA	% PERF.		125	250	500	1000	2000	4000	α "	$\alpha_{_{m}}$
		LM 60 - 200 mm	0,54	0,70	0,61	0,53	0,48	0,49	0,55 (L)	0,54
Aleatoria Redonda 8/15/20	9,90%	Sin LM - 200 mm	0,26	0,53	0,57	0,51	0,43	0,44	0,50 (L)	0,50
0/13/20		LM 70 - 300 mm	0,53	0,67	0,67	0,65	0,49	0,49	0,60 (L)	0,60
		LM 20 - 65 mm	0,35	0,50	0,65	0,55	0,35	0,35	0,45 (L)	0,52
Aleatoria Redonda 12/20/35		Sin LM - 65 mm	0,15	0,30	0,55	0,55	0,40	0,35	0,45	0,50
	9,80%	LM 20 - 200 mm	0,45	0,55	0,60	0,50	0,35	0,40	0,45 (L)	0,48
		Sin LM - 200 mm	0,40	0,50	0,60	0,45	0,35	0,35	0,45 (L)	0,47
		LM 20 - 65 mm	0,35	0,45	0,55	0,55	0,40	0,45	0,50	0,50
Alta-marda 0/10/50	10.100/	Sin LM - 65 mm	0,15	0,30	0,50	0,60	0,45	0,45	0,50	0,52
Alternada 8/12/50	13,10%	LM 20 - 200 mm	0,45	0,50	0,55	0,50	0,40	0,50	0,50	0,48
		Sin LM - 200 mm	0,40	0,50	0,55	0,50	0,40	0,45	0,50	0,48
		LM 60 - 200 mm	0,60	0,87	0,85	0,86	0,70	0,70	0,80 (L)	0,80
Alternada 12/20/66	19,60%	Sin LM - 200 mm	0,45	0,74	0,85	0,73	0,56	0,58	0,65 (L)	0,71
		LM 70 - 300 mm	0,57	0,80	0,83	0,87	0,70	0,71	0,80	0,80
	18,70%	LM 20 - 65 mm	0,35	0,45	0,50	0,50	0,45	0,50	0,50	0,48
Rectilinea Redonda		Sin LM - 65 mm	0,20	0,30	0,45	0,55	0,45	0,45	0,50	0,48
6/18	10,70%	LM 20 - 200 mm	0,40	0,45	0,50	0,45	0,45	0,50	0,50	0,47
		Sin LM - 200 mm	0,40	0,45	0,50	0,45	0,40	0,55	0,45	0,45
	15,50%	LM 45 - 50 mm	0,41	0,70	0,79	0,69	0,62	0,62	0,70	0,70
		Sin LM - 50 mm	0,10	0,27	0,50	0,65	0,63	0,52	0,50 (L)	0,59
Rectilinea Redonda 8/18		LM 60 - 200 mm	0,61	0,76	0,77	0,76	0,70	0,72	0,75	0,74
		Sin LM - 200 mm	0,44	0,72	0,77	0,66	0,64	0,69	0,75	0,69
		LM 70 - 300 mm	0,66	0,78	0,79	0,80	0,72	0,71	0,80	0,77
	14,80%	LM 20 - 65 mm	0,35	0,55	0,70	0,70	0,60	0,65	0,70	0,67
Rectilinea Redonda		Sin LM - 65 mm	0,15	0,30	0,60	0,70	0,65	0,60	0,60	0,65
10/23		LM 20 - 200 mm	0,50	0,65	0,70	0,65	0,60	0,65	0,65	0,65
		Sin LM - 200 mm	0,45	0,60	0,65	0,60	0,55	0,60	0,60	0,60
		LM 20 - 65 mm	0,30	0,55	0,75	0,80	0,70	0,60	0,75	0,75
Rectilinea Redonda	18,10%	Sin LM - 65 mm	0,15	0,30	0,60	0,80	0,70	0,55	0,60	0,70
12/25	. 5, 1 576	LM 20 - 200 mm	0,50	0,70	0,75	0,70	0,65	0,65	0,70	0,70
		Sin LM - 200 mm	0,45	0,65	0,75	0,65	0,60	0,60	0,65	0,67
		LM 20 - 65 mm	0,30	0,55	0,80	0,80	0,65	0,65	0,75	0,75
Rectilinea Redonda	19,60%	Sin LM - 65 mm	0,15	0,30	0,60	0,80	0,65	0,60	0,60	0,68
15/30	17,00%	LM 20 - 200 mm	0,50	0,60	0,75	0,70	0,65	0,65	0,70	0,70
		Sin LM - 200 mm	0,45	0,65	0,75	0,65	0,60	0,60	0,65	0,67
		LM 20 - 65 mm	0,30	0,55	0,80	0,80	0,70	0,75	0,75	0,77
Rectilinea Cuadrada	19,80%	Sin LM - 65 mm	0,10	0,30	0,60	0,80	0,70	0,65	0,60	0,70
8/18	17,00%	LM 20 - 200 mm	0,55	0,70	0,75	0,70	0,70	0,75	0,75	0,72
		Sin LM - 200 mm	0,45	0,65	0,75	0,65	0,60	0,70	0,65	0,67
Doubling of Co. 1		LM 60 - 200 mm	0,64	0,88	0,91	0,87	0,83	0,77	0,70 (L)	0,87
Rectilinea Cuadrada 12/25	23%	Sin LM - 200 mm	0,43	0,78	0,89	0,72	0,68	0,62	0,70 (L)	0,76
		LM 70 - 300 mm	0,75	0,86	0,86	0,90	0,86	0,81	0,90	0,87

		PLENUM		α						
TIPO DE PLACA	% PERF.		125	250	500	1000	2000	4000	$\alpha^{^{w}}$	$\alpha_{^{m}}$
		Sin LM - 65	0,15	0,30	0,55	0,70	0,45	0,40	0,50	0,57
		Sin LM - 200	0,40	0,50	0,65	0,60	0,40	0,45	0,55	0,55
Aleatoria Rectangular RE CONFETI		Sin LM - 400	0,45	0,55	0,55	0,60	0,45	0,45	0,55	0,53
	13,6%	LM 20 - 65	0,30	0,50	0,65	0,70	0,45	0,45	0,55	0,60
		LM 20 - 200	0,45	0,55	0,65	0,65	0,45	0,45	0,55	0,58
		LM 20 - 400	0,45	0,55	0,60	0,65	0,45	0,50	0,55	0,57
		LM 50 - 200 mm	0,35	0,72	0,68	0,56	0,46	0,43	0,55 (L)	0,57
Ranurada Slotline B4	13,70%	LM 60 - 200 mm	0,45	0,73	0,68	0,57	0,48	0,45	0,55 (L)	0,58
		Sin LM - 200 mm	0,32	0,64	0,69	0,51	0,42	0,38	0,50 (L)	0,54
		LM 70 - 100 mm	0,55	0,74	0,66	0,56	0,48	0,43	0,55 (L)	0,57
		LM 60 - 200 mm	0,45	0,73	0,68	0,57	0,48	0,45	0,55 (L)	0,58
Ranurada Slotline B5	10,90%	Sin LM - 50 mm	0,35	0,72	0,68	0,56	0,46	0,43	0,55 (L)	0,57
		Sin LM - 200 mm	0,32	0,64	0,69	0,51	0,42	0,38	0,50 (L)	0,54
		LM 70 - 300 mm	0,61	0,67	0,61	0,59	0,50	0,50	0,60 (L)	0,57
		LM 50 - 200 mm	0,35	0,72	0,68	0,56	0,46	0,43	0,55 (L)	0,57
Ranurada Slotline B6	15,70%	LM 60 - 200 mm	0,45	0,73	0,68	0,57	0,48	0,45	0,55 (L)	0,58
		Sin LM - 200 mm	0,32	0,64	0,69	0,51	0,42	0,38	0,50 (L)	0,54
Perforación Bloque		LM 60 - 200 mm	0,52	0,72	0,65	0,55	0,51	0,51	0,55 (L)	0,57
Redonda (R) B4	11,34%	Sin LM - 200 mm	0,24	0,59	0,61	0,47	0,41	0,41	0,45 (L)	0,50
Perforación Bloque		LM 60 - 200 mm	0,46	0,55	0,47	0,38	0,34	0,36	0,40 (L)	0,40
Redonda (R) B5	6,12%	Sin LM - 200 mm	0,27	0,36	0,36	0,32	0,29	0,29	0,35	0,32
Perforación Bloque	12,83%	LM 60 - 200 mm	0,52	0,72	0,65	0,55	0,51	0,51	0,55 (L)	0,57
Redonda (R) B6		Sin LM - 200 mm	0,23	0,63	0,66	0,49	0,44	0,46	0,50 (L)	0,53
	14,40%	LM 70 - 100 mm	0,58	0,77	0,71	0,67	0,62	0,55	0,65 (L)	0,67
Perforación Bloque		LM 60 - 200 mm	0,59	0,78	0,70	0,65	0,63	0,54	0,65 (L)	0,66
Cuadrada (Q) B4		Sin LM - 200 mm	0,46	0,73	0,74	0,58	0,52	0,43	0,55 (L)	0,61
		LM 70 - 300 mm	0,65	0,73	0,72	0,68	0,64	0,60	0,70 (L)	0,68
	7,84%	LM 70 - 100 mm	0,52	0,63	0,54	0,45	0,39	0,36	0,45 (L)	0,46
Perforación Bloque		LM 60 - 200 mm	0,55	0,57	0,54	0,47	0,41	0,35	0,45 (L)	0,47
Cuadrada (Q) B5		Sin LM - 200 mm	0,42	0,58	0,57	0,41	0,34	0,28	0,40 (L)	0,44
		LM 70 - 300 mm	0,59	0,61	0,56	0,49	0,42	0,39	0,50 (L)	0,49
Perforación Bloque		LM 60 - 200 mm	0,52	0,77	0,65	0,57	0,51	0,52	0,55 (L)	0,58
Cuadrada (Q) B6	16,34%	Sin LM - 200 mm	0,23	0,63	0,66	0,49	0,44	0,46	0,50	0,53
		LM 65 - 63 mm	0,35	0,60	0,70	0,70	0,65	0,65	0,70	0,68
Tangent TL1	15,80%	Sin LM - 200 mm	0,33	0,61	0,74	0,63	0,58	0,62	0,65	0,65
		LM 50 - 63 mm	0,35	0,55	0,65	0,65	0,60	0,65	0,65	0,63
Tangent TL2	15%	Sin LM - 200 mm	0,35	0,60	0,70	0,60	0,55	0,60	0,60	0,62
		LM 50 - 65 mm	0,35	0,50	0,60	0,55	0,50	0,55	0,55	0,55
Tangent TL3	13,30%	Sin LM - 200 mm	0,37	0,57	0,66	0,56	0,51	0,54	0,55	0,58
		Sin LM - 65 mm	0,15	0,35	0,55	0,65	0,60	0,55	0,60	0,60
		LM 50 - 65 mm	0,40	0,60	0,65	0,65	0,60	0,55	0,65	0,63
Micro M1F	9,80%	Sin LM - 200 mm	0,40	0,55	0,65	0,60	0,55	0,55	0,60	0,60
		LM 50 - 200 mm	0,45	0,65	0,70	0,70	0,70	0,70	0,70	0,70
		Sin LM - 65 mm	0,20	0,35	0,50	0,60	0,55	0,45	0,55	0,55
Micro M2F		LM 50 - 65 mm	0,40	0,55	0,60	0,55	0,50	0,50	0,55	0,55
1200×2400	8,40%	Sin LM - 200 mm	0,40	0,50	0,55	0,50	0,50	0,45	0,55	0,52
		LM 50 - 200 mm	0,45	0,60	0,60	0,60	0,60	0,60	0,60	0,60
		Sin LM - 65 mm	0,20	0,30	0,45	0,50	0,45	0,40	0,50	0,47
		LM 50 - 65 mm	0,35	0,50	0,50	0,50	0,45	0,45	0,50	0,48
Micro M2F 900x2700	7,10%	Sin LM - 200 mm	0,40	0,45	0,50	0,45	0,40	0,40	0,45	0,45
		LM 50 - 200 mm	0,40	0,50	0,50	0,50	0,50	0,50	0,43	0,43
		LW 50 - 200 MM	0,40	0,50	0,50	0,50	0,50	0,50	0,50	0,50

TECHOS DANOLINE CLEANEO

TIPO PERF.	% PERF.	PLENUM	α_{s}	FRECUE	ncias (1	a	Q			
III O I EKI.	/0 I LNI.	TELINOM	125	250	500	1000	2000	4000	$\alpha^{^{\wedge}}$	$\alpha_{_{m}}$
Regula	Sin perforacion	Sin LM - 200 mm	0,19	0,20	0,10	0,05	0,06	0,05	O,10 (L)	0,07
		LM 60 - 200 mm	0,58	0,78	0,75	0,71	0,65	0,58	0,70 (L)	0,70
		LM 80 - 200 mm	0,65	0,97	0,84	0,71	0,59	0,50	0,65 (L)	0,71
Globe	10,20%	LM 70 - 100 mm	0,55	0,83	0,80	0,72	0,65	0,56	0,70 (L)	0,72
		Sin LM - 200 mm	0,44	0,72	0,76	0,63	0,57	0,51	0,60 (L)	0,65
		LM 70 - 300 mm	0,58	0,74	0,76	0,73	0,66	0,56	0,70 (L)	0,72
		LM 60 - 200 mm	0,58	0,72	0,72	0,70	0,65	0,59	0,70 (L)	0,69
		LM 80 - 200 mm	0,53	0,94	0,81	0,71	0,66	0,59	0,70 (L)	0,73
Quadril	13%	LM 70 - 100 mm	0,59	0,78	0,73	0,72	0,64	0,60	0,70 (L)	0,70
		Sin LM - 200 mm	0,48	0,70	0,71	0,64	0,54	0,55	0,65 (L)	0,63
		LM 70 - 300 mm	0,59	0,73	0,70	0,73	0,66	0,61	0,70 (L)	0,70
Micro	10,20% - 10,70%	Sin LM - 200 mm	0,33	0,57	0,63	0,57	0,60	0,59	0,60	0,60
MICIO	10,20% - 10,70%	LM 50 - 200 mm	0,42	0,67	0,65	0,62	0,66	0,78	0,65 (H)	0,64
		Sin LM - 50 mm	0,10	0,30	0,55	0,80	0,85	0,80	0,55 (MH)	0,73
	Borde E (Belgravia)	LM 45 - 50 mm	0,35	0,80	0,95	0,95	0,85	0,95	0,95	0,92
Tangent	21,30%	Sin LM - 200 mm	0,40	0,80	0,90	0,75	0,80	0,90	0,80	0,82
		LM 60 - 200 mm	0,65	0,90	0,90	0,85	0,90	1,00	0,90	0,88
	Borde D (Contur) 19,70%	Sin LM - 200 mm	0,35	0,65	0,70	0,70	0,70	0,80	0,70	0,70
	Borde A+ (Plaza),	LM 50 - 65 mm	0,35	0,65	0,85	0,85	0,75	0,85	0,85 (L)	0,82
Unity 3	E+ (Belgravia), D+ (Contur)	Sin LM - 200 mm	0,50	0,80	0,85	0,75	0,75	0,80	0,80 (L)	0,78
	17,20%	LM 45 - 200 mm	0,60	0,85	0,85	0,85	0,85	0,90	0,85 (L)	0,85
	Borde A+ (Plaza),	LM50 - 65 mm	0,40	0,50	0,55	0,55	0,50	0,55	0,55 (L)	0,53
Unity 8/15/20	E+ (Belgravia), D+ (Contur)	Sin LM - 200 mm	0,40	0,55	0,60	0,60	0,50	0,50	0,60 (L)	0,57
	10,80%	LM 45 - 200 mm	0,45	0,60	0,55	0,60	0,55	0,60	0,60 (L)	0,57
	Belgravia, Plaza,	LM 50 - 65 mm	0,40	0,70	0,80	0,80	0,65	0,55	0,75	0,75
Unity 4	Contur	Sin LM - 200 mm	0,45	0,65	0,75	0,65	0,60	0,60	0,65	0,67
	12,20%	LM 50 - 200 mm	0,55	0,75	0,80	0,65	0,65	0,65	0,70	0,70

TECHOS FIBRALITH ORGANIC

TIPO DE PLACA	PLENUM		α_{s}	a	CI.				
III O DE LEACA	T LLI YOUY	125	250	500	1000	2000	4000	$\alpha_{_{\mathrm{w}}}$	$\alpha_{_{m}}$
ORGANIC 35	Sin plenum	0,10	0,21	0,40	0,77	0,81	0,79	0,45 (MH)	0,66
ORGANIC TWIN 25	Sin plenum	0,10	0,36	0,70	0,93	1,05	1,03	0,65 (MH)	0,89
ORGANIC TWIN 35	Sin plenum	0,16	0,53	0,89	1,02	1,03	1,05	0,85 (H)	0,98
ORGANIC TWIN 50	Sin plenum	0,20	0,65	1,05	1,05	1,00	0,90	0,95	1,03
ORGANIC MINERAL 50	Sin plenum	0,18	0,55	1,11	1,04	0,92	1,02	0,85 (H)	1,02
ORGANIC MINERAL 75	Sin plenum	0,33	0,92	1,15	1,00	0,88	0,96	1,00	1,01
ORGANIC MINERAL 100	Sin plenum	0,45	1,06	1,13	0,94	1,00	1,05	1,00	1,02
ORGANIC 25	Plenum 50 en pared	0,10	0,21	0,40	0,77	0,81	0,79	0,45 (MH)	0,66
ORGANIC 35	Plenum 50 en pared	0,13	0,25	0,46	0,81	0,90	0,86	0,50 (MH)	0,72
ORGANIC TWIN 25	50 mm en pared	0,24	0,58	0,71	0,90	1,03	0,98	0,80(H)	0,88
ORGANIC TWIN 35	50 mm en pared	0,27	0,71	0,90	0,98	1,04	1,02	0,95	0,97
ORGANIC MINERAL 50	50 mm	0,31	0,82	1,12	1,07	0,93	1,01	1,00	1,04
ORGANIC 15	200 mm	0,19	0,46	0,49	0,40	0,51	0,62	0,50	0,47
ORGANIC 25	200 mm	0,22	0,60	0,64	0,54	0,66	0,82	0,65 (H)	0,61
ORGANIC 35	200 mm	0,27	0,68	0,68	0,60	0,77	0,90	0,70 (H)	0,68
ORGANIC TWIN 25	200 mm	0,37	0,45	0,65	0,94	1,05	1,00	0,70(MH)	0,88
ORGANIC TWIN 35	200 mm	0,45	0,66	0,84	0,99	1,08	1,03	0,90	0,97
ORGANIC TWIN 50	200 mm	0,40	0,70	0,95	1,05	1,00	0,95	0,95	1,00

Advertencias legales:

La información, imágenes y especicaciones técnicas contenidas en este catálogo, aun siendo en principio correctas, salvo error u omisión por nuestra parte, en el momento de su edición, puede sufrir variaciones o cambios por parte de Knauf sin previo aviso. Sugerimos en cualquier caso consultar siempre con nosotros si está interesado en nuestros sistemas.

Los objetos, imágenes y logotipos publicados en este catálogo están sujetos a Copyright y protección de la propiedad intelectual. No podrán ser copiados ni utilizados en otras marcas comerciales.

Edición: 12/2016

590781

knauf@knauf.es

www.knauf.es

Tel.: 902 440 460

Techos Acústicos Knauf

Avda. de Manoteras, 10 Edificio C 28050 Madrid - España www.knauf.es